CO₂ Capture with Ionic Liquids Involving Phase Change Prof. Joan F. Brennecke/ University of Notre Dame #### **Technology Summary** A new concept for CO_2 capture that uses *phase change ionic liquids (PCILs)* offers the potential to significantly reduce parasitic energy losses incurred from capturing CO_2 from flue gas. PCILs are solid ionic materials that have high CO_2 uptake (one mole of CO_2 for every mole of salt at post-combustion flue gas conditions) and form a liquid when they react with CO_2 . This allows for a novel process that uses the heat of fusion to provide part of the heat needed to release CO_2 from the absorbent, reducing the total energy required. This project will (1) develop and characterize PCILs; (2) evaluate energy savings in a new CO_2 capture process; and (3) demonstrate the technology at laboratory scale. #### **Key Personnel** ND: Joan F. Brennecke, Edward J. Maginn, Mark J. McCready, Patrick Murphy, William F. Schneider MATRIC: George Keller #### **Program Summary** Period of performance: 36 months | | Key Milestones & Deliverables | |--------|---| | Year 1 | Characterization of first set of PCILs (TRL 3) Identification of key process variables | | Year 2 | Detailed process model based on theoretical and
experimental results Go/NoGo based on predicted parasitic energy | | Year 3 | TRL 4 demo of PCIL based CO ₂ capture process | #### Technology Impact In a 500 MW (471 MW derated) coal plant: Aqueous amine scrubbing incurs parasitic energy losses of 28% (132 MW). Current ILs could reduce energy losses to 23% (110 MW) Proposed PCIL process could reduce energy losses to 14% (66 MW)! Radically Reducing the Cost of Carbon Capture ## CO₂ Capture with Ionic Liquids Involving Phase Change Joan F. Brennecke. Edward J. Maginn, Mark J. McCready, Patrick Murphy and William F. Schneider, University of Notre Dame George Keller, MATRIC ### **Technology Summary** A new concept for CO₂ capture that uses *phase change ionic* liquids (PCILs) offers the potential to significantly reduce parasitic energy losses incurred from capturing CO₂ from flue gas. PCILs are solid ionic materials that have high CO2 uptake (one mole of CO₂ for every mole of salt at post-combustion flue gas conditions) and form a liquid when they react with CO2. This allows for a novel process that uses the heat of fusion to provide part of the heat needed to release CO₂ from the absorbent, reducing the total energy required. This project will (1) develop and characterize PCILs; (2) evaluate energy savings in a new CO₂ capture process; and (3) demonstrate the technology at laboratory scale. Goal: develop ionic salts that undergo a phase change (from solid to liquid) when they react with CO₂; taking advantage of the enthalpy change when PCILs react with CO₂ to enable capture of 90% of the CO₂ from post-combustion flue gas with less than a 35% increase in the cost of electricity. **Discovery** - solid ionic materials that: •have high CO₂ uptake (close to one mole of CO₂ per mole of salt at post-combustion flue gas conditions) and •form a liquid when they react with CO₂ (generated as the salt solidifies upon release of CO₂) as part the heat needed to release the CO₂ from the absorbent in the solvent regeneration step **Invention** – use the heat of fusion In a 500 MW (471 MW de-rated) coal plant: - •Aqueous amine scrubbing incurs parasitic energy losses of 28% (132 MW). - •Current ionic liquids could reduce this to 23% (110 MW) - Proposed PCIL process could reduce energy losses to 14% (66 MW) # Approach $+CO_2$ $+CO_2$ $+CO_2$ $-H^+$ +CO₂ -H⁺ Carbon Dioxide Absorber Schemati ◆ Exhaust to atmosphere Operational requirements PCIL and system drive selection of PCIL Systems Design and | | Key Milestones & Deliverables | |--------|---| | Year 1 | •Characterization of first set of PCILs (TRL 3) | | | •Identification of key process variables | | Year 2 | •Detailed process model based on theoretical and experimental results | | | •Go/NoGo based on predicted parasitic | | | energy | | Year 3 | •TRL 4 demo of PCIL based CO ₂ capture | | | process | ### **Progress to Date** - Synthesized five Gen1 PCILs - Measured CO₂ uptake of two Gen1 PCILs and began measurements of other compounds - Developed forcefields for Gen1 PCILs and initiated molecular simulations - Initiated measurements of heats of reaction and construction of packed bed absorption column - Initiated process modeling **MATRIC Team**